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A pattern-recognition procedure designed to extract footprints of organized 
structures from turbulent signals is developed and used to analyse the large-eddy 
organization of several turbulent wake flows. The pattern-recognition technique is 
intended to be a general-purpose analytical tool that, makes no use of specific flow 
characteristics, and that can be implemented as a computer code independent of the 
types of signals to be processed. The technique is applied to analyse the wake 
generated by a single cylinder at downstream positions ranging from x / D  = 10 to 
x / D  = 220. Also the structural features of the wakes behind a rotating cylinder, two 
cylinders of unequal diameters and two cylinders of equal diameter, one rotating, are 
examined at  x / D  = 140. In the near wake the large-scale motions detected are 
Kirman vortices, whose periodic activity persists up to 60 diameters. Further 
downstream the most significant coherent structures detected are single and double 
rollers with shear-aligned vorticity, whose dimensions and velocity intensities are 
properly scaled by the half-width of the wake and the local r.m.s. values, respectively. 
The similarities observed in the organized motions identified in the different wakes 
at  x / D  = 140, suggest that the roller organization may be an intrinsic characteristic 
of fully developed turbulent plane wake flows, irrespective of initial conditions. 

1. Introduction 
In recent years, a rather well-ordered picture of several turbulent flows has 

evolved among turbulence researchers (Cantwell 1981 ; Hussain 1983). One of the 
first fully developed turbulent flows found to contain large-scale ordered motions was 
the turbulent far wake (Townsend 1956; Grant 1958). However, most past studies on 
the analysis of the large-scale organization of turbulence have been carried out in 
boundary layers and mixing layers, probably owing to the great technological 
interest of the former flows and to the occurrence of well-ordered motions in the 
latter (Roshko 1976), which surprised many researchers (Laufer 1975). In addition, 
the techniques of conditional sampling (or phase averaging) and flow visualization, 
which were successfully applied to shear layers and boundary layers to reveal the 
organization of these flows, seem inadequate for the analysis of fully developed 
turbulent wakes and jets. 

Another class of flow exhibiting a high degree of organization is the near wake flow 
behind bluff bodies. Apart from the early visualizations of the Karmin vortex 
shedding process (Prandtl & Tietjens 1934), the most useful information on the 
topology of the near wake flow has been obtained by conditional averaging or phase 
averaging techniques (Davies 1976; Cantwell & Coles 1983; Hayakawa & Hussain 
1985; Kiya & Matsumura 1985). 
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From a comprehensive set of correlation measurements a t  x / D  = 533, Grant 
(1958) postulated that large-scale motions in the far wake consisted of a double-roller 
organization, with vorticity roughly aligned with the axis of the mean rate of strain, 
and of ‘ mixing jets ’ that he envisaged as ejections of turbulent flow from the centre 
of the wake towards the irrotational external flow. Even though it has been pointed 
out that there is not a unique relation between the instantaneous velocity field and 
the correlation tensor (Cantwell 1981), the results obtained by Keffer (1965, 1967) in 
a wake strained through a constant-area distorting duct, gave support to Grant’s 
hypothesis. In addition, the orthogonal decomposition technique developed by 
Lumley (1965), when applied by Payne & Lumley (1967) to the correlation data 
obtained by Grant (19581, again suggested a roller organization in the far wake. In 
this case, however, it has to be recognized that the large eddies depicted by Payne 
& Lumley were slightly tilted anti-shearwise at their centres, instead of along the 
shear axis as suggested originally by Grant. 

Most of the visualizations of the far wake (Grant 1958; Taneda 1959; Keffer 1967; 
Papailiou & Lykoudis 1974) have presented side views of this flow. However, even in 
the case of a wake generated by an infinite cylinder without end effects, the turbulent 
flow downstream is essentially three-dimensional in the instantaneous velocity field. 
The statistical two-dimensionality observed in the mean velocities, turbulence 
intensitics and higher moments is a consequence of the fact that there is not a 
preferred spanwise alignment, and averaging over a long period of time produces the 
same results independent of the vertical slice of the flow scanned. Also, when an 
‘instantaneous ’ photograph is taken, rather than the streamwise evolution of the 
wake, what is observed sometimes are slices through different spanwise positions of a 
three-dimensional organized motion of finite size, as may be seen for example in 
figure 11 of Cimbala (1985). Furthermore, additional caution has to be exercised 
when interpreting such photographs because of the differences between pathlines, 
streaklines and streamlines in a non-stationary flow (Kurosaka & Sundaram 1986) 
and because of the influence of the location where the marker is introduced and where 
the flow is observed (Cimbala 1985). 

Barsoum, Karwall & Keffer (1978) reported measurements of the spanwise 
structure of a turbulent far wake. They observed that the bulges within the wake 
were ‘quite narrow, and hence, being of limited lateral extent, strongly three- 
dimensional in nature ’. This marked three-dimensional character of the flow, added 
to the impossibility of applying phase-averaging techniques to fully developed 
turbulent flows, has limited the knowledge of the large-scale organization of the 
turbulent wake to the original description of Grant (1958) and precluded obtaining 
further pictorial or anemometric evidence of roller organization in the far wake until 
very recently (Mumford 1983). 

Townsend (1979) detected groups of spanwise vortices with vortieity aligned with 
the cylinder axis using a set of anemometers spa+ially distributed in the fully 
developed region of the wake. Savill (1979) modelled the effects of rotation and 
distortion on the wake flow using rapid distortion theory in conjunction with some 
hypothesis on the relative contribution to the turbulent activity of the fine-scale 
turbulence, the roller eddies and the Karman-like vortices. Furthermore, based on 
the technique formerly used by Townsend (1979), he designed a pattern-matching 
technique for the detection and identification of large-scale motions, which was 
further developed by Mumford (1982), who analysed the roller structure in a 
turbulent plane jet (Mumford 1982) and in a turbulent wake (Mumford 1983). A more 
detailed account of the work of Townsend (1979), Savill (1979) and Mumford (1982, 
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1983) will be given concurrently with the analysis of the results presented in the 
following sections. 

The present work has two main objectives. First, to develop within a pattern- 
recognition framework an organized-motion detector, based upon the work of 
Mumford (1982), in order to  show the limitations and capabilities of such a technique 
when used as an analytical tool for the structural characterization of fully developed 
turbulent flows. And secondly, to analyse the structural similarities of the large-scale 
structures in a family of wakes generated by a single stationary or rotating cylinder, 
pairs of unequal diameter cylinders a t  rest and pairs of equal diameter cylinders, one 
stationary and one rotating, with the aim of establishing the dependence of the large- 
scale motions on the initial conditions. The flows analysed correspond to a wake with 
a Karman vortex street (single cylinder), an asymmetric wake (unequal diameter 
cylinders), a distorted wake with inhibited vortex shedding (rotating cylinder) and 
a distorted and asymmetrical wake (one cylinder stationary and one rotating). 

2. Experimental and analytical techniques for the analysis of organized 
motions in turbulent flows 

The first fully turbulent flow that showed evidence of organized motion when 
examined by means of visualization was the turbulent boundary layer (Kline et al. 
1967; Corino & Brodkey 1969; Kim, Kline & Reynolds 1971). However, much of the 
present interest on coherent structures in free shear flows arose from the well-ordered 
behaviour of the turbulent mixing layer, first observed by Brown & Roshko (1974). 
In  both cases, as well as in other flows containing ordered motions, visualization was 
successfully used as a research tool to display the organized features of turbulence. 
However, it was difficult to obtain from correlation measurements clear evidence of 
the organization of these flows (Laufer 1975) and new analytical techniques were 
gradually developed to extract from the anemometric signals the information that 
conventional correlation measurements were not able to reveal. 

One of the first conditional techniques applied to study boundary-layer flows was 
the quadrant decomposition of the Reynolds stress as a function of the sign of the 
fluctuating velocities (Wallace, Eckelmann & Brodkey 1972 ; Lu & Willmarth 1973). 
This procedure can be understood as a generalization of the concepts on conditional 
sampling introduced by Corrsin and Townsend in the 1950s for the analysis of 
intermittency. Interesting bibliographical surveys on conditional sampling were 
published by Van Atta (1974) and Antonia (1981). Later, conditional averages 
generated by two or more indicator functions were used by Keffer et al. (1982) and 
Andreopoulos (1985), among others. 

A qualitative change in the experimental and analytical techniques used to  study 
organized motions in turbulent flows occurred with the development of the VITA 
(Variable Interval Time Averaging) technique. This method was used by Blackwelder 
& Kaplan (1976) and by Chen & Blackwelder (1978) for the analysis of the velocity 
and temperature signals, respectively, in a turbulent boundary layer. The 
breakthrough attained with VITA was the success in separating random con- 
tributions from repetitive trends embedded in a signal by means of ensemble 
averaging (sometimes referred to as phase averaging owing to the kind of problems 
that were first treated this way, see for example Reynolds & Hussain 1972) using an 
indicator function sensitive to the occurrence of organized motions and which 
provided the phasing signal necessary for ensemble averaging. Other types of detector 
functions and special experimental arrangements based on conditional sampling 
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procedures have been developed since then to obtain ensemble averages of organized 
structures contained in different turbulent flows. 

There are detection procedures that make use of some external triggering or 
phasing signal, and others that obtain the indicator function from the same signal 
that has to be averaged. One of the advantages of a technique based in an external 
reference signal is that spatial maps of the coherent structures can be obtained either 
using a conditional sampling procedure (Hussain 1983), or a conditional averaging 
technique in connection with a flying hot-wire arrangement (Perry & Watmuff 1981 ; 
Cantwell & Coles 1983). However, problems derived from phase jitter (Blackwelder 
1977 ; Yule 1980) when the triggering and sampling points separate from each other, 
limit the applicability of the technique and, what is more restrictive, the success of 
a detection scheme depends on the selection of a relatively clear and skewed reference 
signal, and thus on the specific characteristics of the flow under study. 

Conversely, one can recognize, within the analytical tools used for the study of 
boundary layers, techniques that build the phasing signal from the same quantities 
that have to be averaged. This is the same procedure used in the study of the 
intermittence and, in fact, the short-time variances used in the VITA scheme and 
some of the alternative techniques described by Subramanian et al. (1982) can be 
identified as indicator functions previously used in intermittence analysis. One of the 
general limitations of such techniques is that it is not possible to perform 
the detection and ensemble averaging on-line and, therefore, the spatial maps of the 
organized structures have to be changed in time-footprints or time-history of the 
structures while crossing the anemometers. Nevertheless, the kind of signals and 
experimental conditions that the boundary-layer techniques are capable of 
successfully handling are much more complex in terms of random components of the 
signal, random appearance of the burst, etc. than those able to be treated by 
conditional sampling procedures. 

Unfortunately, the VITA technique is not of general use for the study of organized 
motions in turbulent flow because the detection procedure is based on local energetic 
criteria, a feature that may not be shared by all the different types of organized 
motion. In  this sense, the pattern recognition approach of Wallace, Brodkey & 
Eckelmann (1977) avoids making implicit use of the high level of turbulent activity 
associated with the bursting phenomena. On the other hand, however, it is a fully 
syntactical pattern-recognition code that, while allowing detection of bursts in a 
wide range of scales, will hardly be easily applied to the analysis of signals with a high 
content of noise or with unknown characteristics. 

A technique that can be of general use in extracting trends from very random 
signals is the method used by Zilbermann, Wygnansky & Kaplan (1977) to improve 
the ensemble averages obtained under significant misalignment. The procedure 
involved the cross-correlation of the raw signal with the current ensemble average, 
in order to determine the best alignment of the data windows that formed a new 
ensemble average in an iterative procedure where the zero iteration was obtained by 
a conditional sampling arrangement. In  a study of the large eddies in a wake and in 
a boundary layer, Townsend (1979) also made use of local cross-correlation 
measurements to infer from anemometric signals the structural characteristics of the 
flow. What is much more important in his work, from the point of view of a detection 
procedure, is, first, that he assumed that if the large eddies were really ‘large’ their 
passage had to be simultaneously sensed by a set of anemometers widely spaced in 
the flow. Secondly, he tested the kind of large-scale trends registered by the 
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anemometers comparing an eddy model with the experimentally recorded signals by 
means of their instantaneous cross-correlation. 

Further developments of Townsend’s ideas were carried out by Savill (1979). 
Mumford (1982) described a ‘pattern recognition and image enhancement ’ procedure 
that established the basis of the pattern-recognition technique presented in this 
paper and which uses a velocity model to check the structural characteristics of the 
flow. This procedure does not need the knowledge of the flow patterns beforehand 
and permits bounding the number of different patterns recognizable in a particular 
set of data. A further advantage of the procedure to be described is that it can be 
easily implemented as a computer code for the analysis of turbulent signals, 
independent of the flow under study and of the patterns that one hopes to identify. 
In  the following sections a large-scale motion-detection scheme for turbulent flows 
based on previous pattern-recognition ideas will be introduced. I ts  characteristics, 
advantages and shortcomings will be analysed from a pattern-recognition point of 
view. 

3. A pattern-recognition technique for the detection of large-scale motions 
in turbulent flows 

The most difficult step in establishing the foundations of a large-scale eddy 
motion-detection scheme is to produce an appropriate definition of a large-scale 
ordered motion which is flow-feature independent. This is not an easy task as various 
authors seemed unable to adopt a common nomenclature, let alone common 
definitions. While Grant (1958) and Townsend (1976, 1979) referred to ‘large eddies’, 
Mumford (1982, 1983) used ‘large eddies ’ and ‘organized structures ’ as synonymous, 
and Cantwell in his review (Cantwell 1981) preferred ‘organized motion ’. 

More recently, Hussain (1983, 1986) has proposed the ‘ coherent structures ’ 
description. Hussain (1983) defined a coherent structure as ‘a  connected, large scale 
turbulent fluid mass with a phase-correlated vorticity over its spatial content ’. In 
accordance to this definition, Hayakawa & Hussain (1985) have used a large-scale 
detection technique based on the evaluation of the instantaneous large-scale 
vorticity field from velocity data sampled by a set of x -wire anemometers. The 
coherent structures (in that case Karm6n vortices in the wake of a circular cylinder 
a t  x / D  = 10 to x / D  = 40) were detected as closed contours of iso-vorticity and were 
aligned for ensemble averaging by picking up first the peak vorticity positions and 
by improving the average later with a procedure similar to that described by 
Zilbermann et al. (1977). This technique allowed the identification of the large-scale 
organization of the flow studied. However, the computation of the vorticity from the 
x-wire signals requires an assumption about the convection velocity of the 
organized motion. Also interpolation is needed to obtain the vorticity a t  midpoints 
between anemometers, and the technique is limited to the use of sets of aligned x - 
wires. 

Our aim is to set up the basis of a general procedure to extract repetitive trends 
embedded in apparently random signals. Therefore we prefer to define a turbulent 
ordered motion in a wide sense as a flow organization, characterized by some typical 
velocity, vorticity, etc. distribution over a spatial region, which is frequently 
recurring, even though in most cases a t  random intervals, and is capable of yielding 
a statistically significant ensemble average. This definition has no direct link with 
vorticity dynamics, and can be considered excessively signal-processing oriented. 
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Nevertheless, we believe this to be a desired feature in our definition to distinguish 
the characteristics of the analytical tools used from the significance of the results that 
those can provide when they are interpreted from a turbulence dynamics point of 
view, in the same sense, for example, as spectral analysis may be used, irrespective 
of whether the flow under investigation exhibits any periodicity or coherence. 

Three stages are involved in the present approach. The first is to adopt a 
‘minimum’ definition for the ordered motion, that does not imply any specific 
connotation when considered in the turbulent context. This connotation is, in fact, 
what is intended to be evaluated, and cannot be assumed in advance. The second 
stage is that, owing to  the random character of the turbulent signals, any assessment 
of organization cannot be supported on the basis of individual realizations but has 
to be significant in the sense that there exist a subset of realizations that can be 
averaged to obtain a representative mean, which, in turn, is significantly different 
from the conventional one. The ‘significant difference ’ can be objectively evaluated 
using a statistical significance test to ascertain the probability of obtaining such 
different values by chance. And the third stage is that once some ordered, non- 
random motion is definitely observed in a set of data, the results have to be 
scrutinized from the fluid mechanical point of view to see if they shed new light on 
the turbulence dynamics. 

To state the procedure in more physical terms, let us assume that the flow under 
investigation is being observed from an Eulerian frame of reference. Suppose that by 
means of some non-intrusive technique yet to be developed, it were possible to 
repeatedly sample instantaneously and simultaneously, a t  a set of densely packed 
points spanning some fixed volume, a momentum-balance related quantity (velocity, 
vorticity, . . . ) or the concentration of some suitably introduced marker (heat, for 
example), and that an unconditional ensemble-averaging procedure were carried out 
to obtain mean values of the measured variable a t  each point. If one suspected that 
the turbulent flow contained some kind of organization, i t  would be possible to obtain 
an ensemble average using only selected sets of points (simultaneously sampled over 
the sampling region) from the population that contributed to the conventional 
average. The conditional ensemble average obtained in this way would, in general, 
be different from the conventional one, and the probability that the differences 
occurred only by chance would have to be tested for statistical significance. If finally 
it could be demonstrated that the ensemble averages were significantly different, one 
would be able to conclude that an organized motion had been detected. However, a 
statistically significant result does not automatically imply a result of practical 
importance, unless the difference between observed means is of the same order of 
magnitude as the means themselves, and the organized motion detected can be 
demonstrated to play some important role in that turbulent flow. 

In  this hypothetical experiment, one can observe an important feature. If no 
rotation or scaling is allowed, not all the topologically similar flow organizations will 
be recognized as belonging to a family of organized structures. From the point of 
view of rotation it is necessary to point out that  if the organized motion appears with 
a random orientation the problem is suitable for statistical treatment. In  fact, some 
of the early ideas of organized eddies in turbulent flows attempted to describe 
isotropic turbulence as a random superposition of a family of deterministic vortices. 
A discussion of these models can be found in Saffmann (1981). Moreover, from the 
point of view of the scale or size, it has to be taken into account that  larger flow 
organizations are less likely to have random orientations, because they are more 
sensitive to the boundary conditions of the flow (in free shear flows they are 
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effectively confined by the turbulentlnon-turbulent interface), while smaller ones are 
candidates for more random orientation. These are some of the reasons why, 
although the possibility of occurrence of organized motion is not necessarily confined 
to the large scales, evidence of ordered motion has been observed mainly in the large 
scales of turbulent flows. 

In  the following, attention will be concentrated upon the large-scale motion of 
turbulent wakes. By definition, a large-scale organized motion spreads its influence 
over a large region of the flow. Therefore i t  should be possible to study such large- 
scale motions by means of the analysis of the footprints they leave over a set of 
sensors widely spaced within the flow, the spacing between sensors being of the order 
of some characteristic lengthscale of the bulk flow (i.e. the half width of the wake) 
and the overall span of the sensors being of the order of the total width of the shear 
flow. 

Probe interference effects and economic constraints usually oblige the substitution 
of the spatial downstream coordinate of the volume scanned by a temporal 
coordinate. Then, instead of spatial distribution, we have to analyse time histories 
of the structures while crossing the anemometers. This implicitly necessitates the use 
of Taylor’s hypothesis of frozen turbulence, in assuming that the structures do not 
change significantly during the time interval in which they are sensed, although it is 
not necessary to explicitly transform the time coordinate into spatial displacements. 
The number of sampling points (anemometers, thermometers, etc.) that have to be 
used, and their relative position (alignment, geometrical distributions.. .) are a 
matter of preference (or possibly necessity). A set of anemometers aligned with either 
the y-axis (shear coordinate) or the z-axis (spanwise coordinate) sampling ‘slices ’ of 
the flow, seems to be one of the most reasonable arrangements because the two- 
dimensional array of sampled velocities in (y, t )  or (2, t) coordinates can be processed 
to extract information of the organized motion with vorticity aligned along the z-axis 
(spanwise structures with circulation in an (x, y)-plane) or the y-axis (‘three- 
dimensional ’ structures with circulation in an (x, 2)-plane). 

Suppose that a turbulent variable, D, has been simultaneously sampled at  i = 

I ,  2, ... i, points (not necessarily equally spaced or aligned), thus obtaining a 
two-dimensional array of data that can be written as D ( i , j ) ,  i = 1,2,  ... , i,, j = 
1 , 2 , .  . . ,j,. The detection scheme to be designed has to be able to select all the data 
frames or windows of size (k,,Z,. points containing the same kind of time patterns 
in order to obtain their ensemble average 

1 m, 

m,+ w m x  m=l 
(D(i,j)) = (D)(k,l) = lim - 2 D [ I ( m ) + k , J ( m ) + l ]  

(8% = 1 ,2  ,... ,I%,; 1 = 1,2 ,... ,1,) (1) 

where I ( m )  and J(m)  are vectors containing the starting points of all the data frames 
to be averaged. Without lack of generality, let us assume that k, = i, to simplify the 
following discussion. Later i t  will be shown that the technique easily expands to 
unequal sizes. I f j ,  is the beginning of an arbitrary data frame H(k, I )  of size (i,, Z,), 
then 

H(k,l)  = D(i , j )  (k = 1,2  ,... ,i,; 1 = 1,2,  ... ,ZJ; 

( i  = 1,2  )... ,i,; j = j 0 + l , j , + 2  ,... ,jo+l,). (2) 
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Any data frame corresponds to a point in a c,-dimensional vector space, P(c ) ,  
c = 1,2,  ... , c,, with c, = i,l,, through the relation 

P ( c )  = P ( k +  (I - 1)  i,) = H ( k ,  I) (C = 1,2 ,  ... , c,; 

k = 1 , 2  ,..., i,; I = 1 ,2  ,..., Z,), (3) 

and all the data frames that can be taken from the data, for j, = 0 ,1 , .  .. , ( j x - l x ) ,  
form an ordered set of vectors spanning the pattern space. 

The pattern-recognition problem is how to establish a partition of the pattern 
space in such a way that all the points in one partition belong to  the same family or 
class of those prcdefincd by some rule or feature. Sometimes the features that 
distinguish one class from another are unknown and the approach is to recognizc the 
clouds that arise from the natural grouping of point,s. 

The different cases commonly encountered in a two-dimensional space are those 
depicted in figure 1 .  Figure 1 ( a )  shows the case where the points are not naturally 
grouped and it is difficult to define a general criteria on how to partition the pattern 
space in different classes. Figure 1 ( b )  depicts a situation with three different classes 
and the partitioning can be established simply by selecting the lines that limit the 
regions containing each family (linear discriminant analysis). Alternatively, the 
classification can be performed if the natural clouds that appear are recognized and 
single or multicentred ‘clusters ’ of neighbouring points are formed (clustering 
analysis). In  a multidimensional space the points cannot be visualized so easily and 
special techniques have to be applied (Bow 1984). Finally, figure 1 ( c )  presents a case 
that could only be handled by minimum-spanning tree or similar techniques. 

It is worth investigating in more detail the idea of ‘natural’ classification 
underlying the clustering algorithms regardless of the suspicion that the plot of the 
vector patterns arising from turbulent signals is going to be more similar to the 
grouping of figure l (u )  than that of figure l ( b ) .  To be able to evaluate closeness 
between points, a measure of distance has to be introduced, and if the coordinates in 
the pattern space have been appropriately normalized or have the same weight in 
defining different features, the use of an Euclidean distance 6 between two points, P 
and Q,  is the obvious choice, 

where the modulus of the vector Q ( c )  has been chosen as a normalizing factor. Let us 
evaluate the quality of such measure of closeness or similitude in a problem arising 
from a turbulent flow. A large-scale motion detector is expected to exhibit at least 
three properties : 

(i) Not perturbed or distorted by the background, fine-scale turbulence. If 
possible, we would like to design a detector fully independent of the noisy effects of 
the fine-scale turbulence over a wide range of signal-to-noise ratios. 

(ii) Amplitude independent, i.e. prepared to detect and classify correctly large- 
scale motions even in the case where their energy content is low. This can be 
reformulated saying that the same decision has to be taken for two footprints 
differing only by a multiplicative factor. 

(iii) Size independent. 
The size independent feature is by far the most difficult to fulfil. If the detection 

scheme is not based on a fully syntactic rule, independent of the spatial and temporal 
coordinates ~ as is the case of the pattern-recognition scheme proposed by Wallace 
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FIGURE 1. Examples of grouping in the pattern space. ( a )  No apparent grouping. ( b )  Families of 
points that can be classified by linear discriminant analysis or clustering. ( e )  Families of points not 
separable by clustering. (d)  Classification of points in the pattern space selecting feature axis by 
means of correlation measurements. 

et al. (1977)-but is built upon the hypothesis that organized motions will be 
recognized by the simultaneous effects produced in a set of sensors, then the selection 
of a particular probe spacing implies the selection of a limited range of sizes. Only in 
the case of a very dense grid of sampling points could one expect to detect organized 
motions within a range of sizes from one to ten. 

In  the case of the pattern-recognition analysis carried out by Wallace et al. (1977) 
in a boundary layer, only one sampling point was used at a high sampling rate. The 
coordinate representative of the footprint to be detected was known in such detail 
that a series of patterns and sub-patterns could be selected. Otherwise, if we recall 
the definition of coherent structure as a large-scale organized motion spanning the 
full width of the flow, i t  appears that as the coherent structure size decreases, the 
importance of such organization as large scale also decreases. Even though size- 
invariant pattern-recognition schemes have been developed in the past (Altmann & 
Reitbrok 1984; Lahart 1984), it has to be pointed out that  the real limitation of the 
size-independent condition is the maximum number of anemometers that could be 
used in an experiment. 

The success of a pattern recognition scheme in handling noisy signals is related to 
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the common idea of filtering. Obviously a low-pass filter can remove the high- 
frequency fluctuations, producing a smooth signal. However, filtering per se is 
questionable in a t  least three aspects. First, it  remains unanswered where the 
patterns are located in the filtered version of the signals, because even in the case of 
filtering a quantity such as vorticity that could be directly used as a large-scale 
detector, the filter action consists of smoothing the signal and not in defining a 
detection criteria. Secondly, not all the high-frequency components of a signal are 
due to fine-scale turbulence. The Fourier transform of a box-shaped function, for 
example, spans from the lowest frequencies to the highest values through successive 
ripples of decreasing amplitude but containing an important amount of energy. One 
can argue that the coherent organization of any flow is not going to be box-shaped, 
but the same reasoning applies to footprints containing sharp gradients. And thirdly, 
the specifications of a filter are set in the frequency domain and any relation to the 
time domain, i.e. to the spatial coordinates, is, therefore, lost. 

Nevertheless, the smoothing properties of filters are extremely important. Consider 
the case where the Euclidean distance is accepted as the criteria to evaluate if a 
specific pattern belongs to the class represented by a prototype &(c) .  Suppose, in 
addition, that the pattern P(c) to be classified is exactly the prototype buried in noise 
of zero mean, i.e. P(c) = & ( c ) + N ( c )  with C N ( c )  = 0. If the normalizing factor is 
chosen to be the length of the prototype, the distance between P(c) and Q(c) is given 

It can be deduced that not only is the pattern to be recognized contaminated by noise 
but also the decision that is going to be taken. If the signal-to-noise ratio is very high, 
the threshold value in the acceptance criteria can be relaxed, but as the noise 
becomes more and more important the probability of wrong decisions increases 
quickly. It is easy to check that the amplitude independent condition is not 
accomplished because 

where s is a scaling factor. We are going to show why such a measure of similitude 
is noise dependent. If the numerator of (5) is expanded, 

~ ' ( S Q ,  Q )  = ( l - ~ ) ' ,  (6) 

C [ P ( c )  - &(c)]' = C P ( C ) ~  + CQ(c)' -2CP(c)  &(c), (7 )  

and each individual term is expressed as a function of Q(c) and N(c)  only, and the 
uncorrelation between &(c) and N(c)  is used to  reduce all summations C & ( c ) N ( c )  = 

CP(c)&(c) = c &(c)" ( 8 c )  

It is clear that the noise dependence is produced by the term c P(c)', i.e. the modulus 
of the vector P(c ) .  However, the cross-correlation term does not contribute to the final 
value, but simply cancels out with the other terms. This suggests that if instead of 
the Euclidean distance the cross-correlation between the prototype and the pattern 
to be classified was introduced as a measure of similitude or ' closeness ' in the pattern 
space, 
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then noise independence could be reached. It is easy to show that a vector including 
uncorrelated noise gives the same correlation coefficient as a ‘clean’ one 

The amplitude-independent condition is not exactly fulfilled. This deviation is of 
minor importance, as will be shown later, because the value of the correlation 
obtained is not equal to unity, but exactly the amplitude factor 

When the cross-correlation coefficient is expressed as a function of the test pattern 
T(k, l ) ,  k = 1,2, ... , i,, 1 = 1,2, ... , I ,  and of the recorded data D(i , j ) ,  i = 1,2 ,  ... , i,, 
j = 1,2, ... ,jx, i t  can be written as a two-dimensional array R(m, n), m = 1, 
n = 1,2,. . . , (j, - 1, + 1) with only one row 

1 i z  12 

- c x D(p,q+n-1)T(p,q)  
i,l, p-1 q-I 

(12) 4 R(m,n) = 
i, iz kz 12 [(L z c D ( i d 2 ) ( L  k x l z  k-1 x 1-1 c T ( k , V ) ]  

2x1, (-1 j-1 

where the normalizing factor has been chosen to be the product of the mean r.m.s. 
values of T(k,  1 )  and D ( i , j ) .  The two-dimensional form is introduced to extend the 
procedure to the case of different width of data and test pattern matrices that will 
be presented later. 

As a consequence of the fact that the different patterns or data frames which have 
to be classified are obtained in an ordered manner, consecutive data frames with 
increasing values of the cross-correlation coefficient indicate that alignment between 
the test pattern and the window of data is improving, until a local maximum in the 
cross-correlation function is obtained, i.e. until the best concordance or similitude 
between the test pattern and the recorded turbulent signal is attained. Thus, the 
decision of accepting or rejecting a data frame as belonging to the class represented 
by some prototype, depends only upon the values of the local extrema of the 
correlation function being higher or lower, respectively, than a pre-selected threshold 
value. This value has to be low enough to allow patterns equal to the prototype but 
with intensity reduced by a scaling factor to be classified correctly. In  fact it is only 
necessary to discard the very low maximum values of the correlation function to 
obtain threshold - invariant ensemble averages. 

The smoothing properties of the correlation operation arise from the fact that 
cross-correlating is equivalent to convolving, and convolution is the time domain 
expression of a filtering process. The main differences with respect to a standard 
filtering operation are that the filter applied in this case is designed not from the 
frequency domain specifications, but from the time domain, and that filtered signals 
are taken as an indicator of the time-lag necessary to reach the best alignment in the 
ensemble average. This procedure is similar to that used by the ‘matched filtering’ 
techniques of signal identification (Whalen 1971). The latter has the disadvantage, 
however, that the (matched) filter is designed to detect a known signal buried in noise 
and the filter specifications have to be known exactly. This is not the case of the 
problem under study because one wants to design a detection scheme not only able 
to extract known characteristics but powerful enough to discover unknown or even 
unexpected features. Let us split the problem into two subproblems ; how to obtain 
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an initial estimate of the large-scale footprints Z And second, having obtained an 
initial estimate how to improve i t ?  

The improvement of initial estimates can be achieved from the ideas of clustering 
analysis. If an initial estimate is obtained for each of the patterns to be detected, the 
pattern space can be partitioned into a known number of classes (as many classes as 
different initial patterns selected) by classifying each point as belonging to the class 
represented by the ‘more similar’ prototype (the initial estimate). Once the pattern 
space is partitioned, new cluster centres can be evaluated as the mean value of all 
points belonging to  one class and the process can be iteratively repreated until no 
significant displacement of the cluster centre is observed (Bow 1984). This procedure, 
stated in terms of data frames and ensemble averages, implies that once one 
ensemble average is obtained it is used as the starting point for a new iteration, a 
procedure that continues until no significant variation in the features displayed by 
the ensemble average is detected. This iterative procedure first described by 
Mumford (1982), ensures that even in the case of a bad initial estimate, the genuine 
features of the data being processed can be extracted. 

How to obtain an initial estimate of the large-scale footprints and how many 
‘different ’ footprints can be detected, are two questions with very different answers. 
From a pattern-recognition point of view it can be deduced how many different 
patterns one can expect to distinguish in a given experimental situation. However, 
the form of the initial estimates have to  be inferred from the previous knowledge (and 
sometimes prejudices) of the flow under study. Savill (1979) and Mumford (1982, 
1983) choose their initial patterns from the analysis of correlation data. Often one 
can handle this problem by establishing a full set of ‘possible’ patterns and running 
the pattern-recognition algorithm for each one of them. From the results obtained by 
Ferr6 & Giralt (1989) in a thermally contaminated wake it is evident that even such 
a black-box approach gives very good results. 

In  a pattern space like that presented in figure 1 ( b )  there can be identified as many 
different classes as non-overlapping closed lines can be drawn, i.e. as many as points 
in the pattern space. However, it has to be remembered that the condition of noise 
independence implies the substitution of a conventional distance measurement by a 
cross-correlation coefficient, which corresponds to the inner product of the two 
vectors P(c)  and &(c) .  Since & ( c )  is a fixed vector and P(c)  i s  only one term in the 
series of consecutive data frames formed from the data, the classification procedure 
can be understood as the selection of the vectors that locally have the highest 
projection over the direction determined by the vector & ( c ) .  The partition of the 
pattern space by means of the correlation measurements and the iterative procedure 
based upon the ensemble averaged patterns, are not procedures for selecting 
independent clouds of points, like those in figure 1 ( b ) ,  but for obtaining successive 
approaches to the principal feature axis of the pattern space?. This situation is 
depicted in figure 1 ( d ) ,  which illustrates the equivalence of the cross-correlation 
procedure and the computation of projections for each vector over the feature axis. 
Only local extrema in the correlation function and only a small number of selected 
points from the pattern space are subjected to  a decision procedure and are classified 

t From equations ( 5 ) ,  (8) and (9) it  can be observed that the substitution of an Euclidean 
distance by a correlation measure implies losing the information brought by the modulus of the 
vector P ( c ) .  While this leads to the desired noise-independence condition, the triangle rule is 
broken, i.e. if Q l ,  QZ and Q3 define a triangle then S(Q1, QZ) + 6(Q2, Q3) 2 S(Q1, Q3). This inequality 
does not hold for r measures instead of 6. This is the reason why the procedure is not able to form, 
strictly speaking, ‘clusters ’, but only to select ‘feature axis ’. 
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as members of one class or rejected by the threshold band. This band not only rejects 
the weakest patterns, but also contains the vectors mainly aligned with the axis 
perpendicular to the current feature axis. 

From linear algebra, we know that any set of c, linearly independent vectors can 
be used as a basis for a c,-dimensional space, although a set of orthogonal vectors is 
preferable. This means that c, linearly independent patterns can be distinguished 
within the data if the windows used in the pattern recognition are of size c, = ixlx. 
For example, a common experimental arrangement with a set of eight anemometers 
sampling u-velocities a t  5 kHz per channel in a turbulent flow, with large-scale 
motions extending over time lengths of the order of 20 ms, would lead to an 800- 
dimensional space. The problem is not as untreatable as i t  may seem a t  first glance, 
because the pattern space is 800-dimcnsional, but the feature space is, a t  least, one 
order of magnitude smaller. 

The problem is then how to pre-proccss the data in order to reduce the 
dimensionality of the pattern space to that of the feature space. It has to be taken 
into account that the limited number of sensors used imposes in the spatial direction 
a sampling period usually one or two orders of magnitude below the A/D sampling 
rate. Thus, the individual values of data obtained in the high-density sampled 
coordinate have to be appropriately grouped or concentrated in a single point to 
produce an equally spaced array of samples in both dimensions. If such ‘feature 
extraction ’ stage is used before the pattern-recognition analysis is carried out, the 
problem becomes choosing among a small number of different patterns. I n  fact, it is 
not necessary to reduce the dimension in a pre-processing stage, because cross- 
correlating the data with the test pattern does it automatically. However, this 
reduction is useful as a conceptual tool to understand how many ‘different ’ patterns 
can be detected in a given set of data. 

The best basis for a vector space is that formed by orthogonal vectors because they 
fulfil the condition of linear independence as a whole and are, one by one, 
independent. From the point of view of the pattern space, the orthogonality is a 
desirable property because, observing orthogonal (independent or uncorrelated) 
ensemble averages, we are sure that the features depicted by each individual 
ensemble average are not contaminated or mixed with those depicted by a second 
one. Consequently, if a simultaneous classification of the pattern space is planned, 
the different initial test patterns have to be selected uncorrelated. Sometimes, 
however, the pattern recognition analysis can be developed using single classification 
criteria in consecutive stages. Once one feature axis is extracted, i.e. an invariant 
ensemble average is obtained from some initial estimate, the same data can be 
processed with an initial test pattern independent of the former ensemble average, 
and so on. Both techniques have been used in the present work and will be discussed 
in conjunction with the analysis of the different wake flows studied. 

Although not explicitly stated, it has been assumed up to now that the raw data 
being processed were of some turbulent scalar variable (u-velocity , temperature). 
The technique can be easily expanded to handle velocity signals obtained by an array 
of x -wire anemometers or even by an array of multiple-wire probes, distributed in 
a two- or three-dimensional space. The only change that would have to be introduced 
in these multidimensional cases is in the cross-product between the test pattern and 
the raw data given by equation (12). If the point by point product between scalars 
can be expressed as the inner product between vectors, all the procedures described 
can be adapted to process vectorial data. Obviously, in this case, the test pattern has 
to be also a matrix of vector velocities and the ensemble average has to consist of 
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averaging vectors instead of scalars. This could be a different approach to the 
technique presented by Hayakawa & Hussain (1985), because the vorticity content 
of a particular data frame would also be checked, not directly over the instantaneous 
vorticity map but by comparison to the vorticity content of the test pattern. 

4. Experimental equipment and data acquisition 
All the wake flows analysed were generated in an open-circuit, suction-type wind 

tunnel, with flow continuously controlled in the range 1-20 m/s by a variable speed 
fan. The test section was 600 x 600 mm2 by 3 m long. A set of flow straighteners and 
filters, in combination with a 9 : 1 contraction zone produced a flow with a free-stream 
turbulence less than 0.4%. 

Figure 2 shows the different cylinder configurations used and their sizes. All data 
were obtained a t  a Reynolds number based on the free-stream velocity and the 
cylinder diameter of 9000. When more than one cylinder generated the wake flow, 
the Reynolds number was referred to  the largest diameter. This resulted in free- 
stream velocities of about 7 and 11.3 m/s for cylinder diameters of 19.3 and 12 mm, 
respectively. 

Eight normal-wire constant-temperature anemometers (DISA 55M01/55M10 
bridges and 55Pll probes), operated a t  an overheat ratio of 1.8, were used to sample 
the turbulent u-velocity signals in the wakes. The anemometers were calibrated 
assuming a King's law relation, 

whcre E is the bridge voltage, R, and Rg the operating and cold wire resistances, 
respectively, U ,  the effective cooling velocity and A ,  R and n constants obtained by 
calibration. The anemometers were calibrated in the empty test section of the wind 
tunnel, with velocities measured with a Pitot tube connected to a differential- 
pressure cell, and anemometer voltages obtained via A/D conversion. 

The data acquisition was carried out with a 12-bit A/D converter DIGITAL 
ADFO1, supported by a PDP 11/60 computer. The A/D converter had a 16-channel 
single-ended multiplexed input, with a maximum sampling rate of 400 kHz, 
provided with alternate-buffer capabilities. The effective maximum sampling rate for 
continuous data acquisition was limited by the maximum writing speed of the disk 
pack. A complete set of data acquisition and file handling programs were written to 
allow physical input/output, thus increasing the effective maximum sampling rate 
from 16 kb/s (unformatted WRITE from FORTRAN) to  160 kb/s, i.e. 80 kHz 
because 12 bits were stored in a word of two bytes. 

The voltage signals were centred to zero by subtracting the d.c. component, 
amplified, low-pass filtered at 2 kHz and sampled at 5 kHz per channel. The low-pass 
filters were second-order I I R  Butterworth fi!ters. For each set of experimental 
conditions the data acquisition system was calibrated to  reduce inaccuracies. In  all 
experiments, continuous records of 40 s were digitized, copied onto magnetic tapes 
and processed in an IBM 3083 computer at CIUB (Informatic Centre of the 
University of Barcelona). 

Data acquisition in the family of wakes described was performed in two 
perpendicular planes as shown in figure 3. The spacing between anemometers was 
selected to be 0.6 I,, (1, is the half width of the wake as defined in figure 3), thus 
covering the whole velocity defect zone in the vertical plane and an equivalent region 
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FIGURE 2. Wake configurations. 

I 

_/-- L a  

FIGURE 3. Flow configuration and sampling planes. 

in the horizontal one. Table 1 includes the information about all relevant parameters 
related to the anemometer arrangements. It should be noted that in the near-wake 
experiments the spacing between anemometers was altered, as depicted in table 1. 
When the wakes under study were symmetric, data were recorded only in one 
horizontal plane, but when the wakes were asymmetric both upper-half and lower- 
half horizontal planes were separately investigated. In  those cases the set of 
anemometers was centred in the dynamical field of the wake rather than in the 
geometrical centre (see figure 3). 

5. The pattern-recognition algorithms 
Two pattern-recognition computer codes were developed to analyse the recorded 

turbulent signals. As the sampling points used in each case were equally spaced and 
aligned, a further extension of the principles established in the preceding sections can 
be developed. If the number of sampling stations available were enough to cover a 
region an order of magnitude greater than the width of the wake, the selection of 
patterns of organized motion, in both horizontal and vertical planes, would reduce to  
the identification of sub-frames within the matrix of data points. However, the 
sampling stations barely cover the width of the flow and while in the vertical plane 
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Wake X J D  Plane 1,ID Spacing/ 1, UP I UO 
- S 10 ( Y ,  t)" 0.90 0.45 

S 60 ( Y , t )  2.17 0.6 
S 60 ( z ,  t )  2.17 0.6 
S 100 (23 t )  2.82 0.6 
S 140 (2, t )  
S 140 (Y 3 3.31 0.6 
S 220 ( z , t )  4.05 0.6 

R 140 ( z ,  t ) b  2.30 0.6 1.5 

- S 30 (Y > t )  1.45 0.9 
- 
- 
- 

3.31 0.6 - 
- 
- 

R 140 (Y > t )  2.30 0.6 1.6 

R 140 ( Y ,  t )  1.83 0.6 2.0 
R 140 (2, Qb 1.83 0.6 2.0 

- SP 140 (Y 9 t )  2.83 0.6 
SP 140 (23 t )  2.83 0.6 

DU 140 ( Y ,  t )  3.90 0.6 
DU 140 (2, t ) b  3.90 0.6 

- 
- 
- 

DR 140 ( Y ,  t )  4.0 0.6 0.0 
DR 140 ( Z >  t )  4.0 0.6 0.0 
DR 140 (Y? t )  3.0 0.6 - 2.0 
DR 140 (2, t ) b  3.0 0.6 - 2.0 
DR 140 ( Y ,  t )  3.0 0.6 2.0 
DR 140 (2, t )*  3.0 0.6 2.0 

S, single cylinder; R, rotating cylinder; SP, cylinder with trailing splitt,er plate; DU, two 

a Anemometers spanning over the half upper wake. 
unequal cylinders; DR, two cylinders with one of them rotating. 

Data available for both upper and lower side of the wake. 

TABLE 1 .  Sampling stations and experimental conditions. 

one can expect to locate organized motions within the bounds of the irrotational flow, 
in the horizontal ones the effect would be very different. 

If there is no preferred spanwise alignment, the set of anemometers will be sensing 
only a portion of the structures or perhaps misaligned structures. As a consequence 
and following the work of Mumford (1982) a test pattern wider than the data matrix 
was used to  ensure the detection of any kind of organized motion, irrespective of their 
spanwise alignment. This situation is illustrated in figure 4, where a test pattern 
spanning the width of 12 hypothetical anemometers is shown aligned over a data 
matrix of only 8 anemometers. In  terms of the correlation function over which the 
detection procedure has been based, this new situation leads to a two-dimensional 
correlation function R(m, n) ,  m = 1,2 ,  ... , (k , - i ,+  l ) ,  n = 1,2 ,  ... (j,--l,+ l ) ,  

1 (2 12 

- 2 C D ( p , q + n - l ) T ( p - m + k k , - i , + l , q )  
(14) ixlx p-1  q-1 R(m,n)  = 

f x  j x  k2 1, 

[(L) c x D(iJY)(+ x z T(k,  1Y)T . 
i x l ,  c-lj-1 x x k-1 1-1 

The organized motions are detected again as local extrema over a two-dimensional 
domain. In other words, for each value of n = 1,2 ,  ... ,n, the best transversal 
alignment is selected in m = 1,2,  . . . , m,, and among the best transversal alignments 
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. . . .  . . . .  . . . .  . . . .  . . . .  . . . .  . . . . 
FIGURE 4. Data matrix and test pattern. 

local extrema along the longitudinal coordinates are identified as pointers of the 
frames of data containing some specific organization. 

5.1. Generation of test patterns 
The test pattern used as starting points in the clustering algorithms have been 
generated simulating the passage of known vortices across a set of anemometers 
while convected by a turbulence-free mean flow. It should be noted that with u- 
velocity data only it is more difficult to establish a relation between the flow patterns 
observed and the stream function or iso-vorticity contours of the rollers. In  what 
follows, some examples of synthetic experiments with ‘anemometers ’ sensing stream 
function, vorticity and u-velocity are presented first. The family of vortices used in 
the simulated experiments is described by a stream function Gaussianly damped 
(Townsend 1976) 

where $o, xo, yo and zo are arbitrary normalizing and size parameters. The velocity 
field induced by the vortex is 

u = -a*/ay, v = a+/ax, w = 0. (16a,b,c) 

If the vortex axis is free to be randomly oriented with respect to the anemometer 
reference axis, a whole family of instantaneous velocity patterns can be generated. 
The function f(x/x,,, y/yo, z / z o )  controls the zeros of the stream function and vorticity 
of the modelled vortex. For example, iff = 1, xo = yo, and zo+ 00, a two-dimensional 
infinite vortex with a bell-shaped stream function cross-section is obtained. This is 
the single-roller velocity-pattern model shown in figure 5. Iff  = x /xo ,  a nodal plane 
for $ is introduced and two side-by-side counter-rotating vortices that correspond to 
the double-roller model are obtained. 

Figure 5 presents cross-sections or slices of the single- and double-roller vortices in 
terms of stream function, vorticity and u-velocity. These plots, as well as those 
generated by the pattern-recognition computer codes, are presented as iso-level 
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Single roller Double roller 

FIGURE 5.  Cross-sectgons of the single- and double-roiler vortex models. 
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contours at *lo%, +25%,  +50% and k75% of the peak signal. In  addition, 
arrowheads have been added to show the sign and magnitude of the sampled 
quantity. The rule adopted has been the following: the horizontal axis is the time 
coordinate increasing from left to right and the vertical axis is the spatial coordinate 
z or y. Arrowheads are scaled to show relative magnitude and are directed to the left 
for negative values and to the right for positive ones. Both axes are always equally 
scaled so that the pattern presented are in ‘natural’ proportions (time coordinate 
units are converted in space coordinate units using a convective velocity equal to the 
mean velocity of the anemometer set). Since the probe gap is 0.6 l o ,  all the ensemble 
averages presented will be ( N -  1) 0.6 1, high and 2 ( N -  1) 0.6 1, long in size. N is the 
number of anemometers of the ensemble-averaging window, and is equal to 12 in the 
analysis of the (z , t )  data. 

The above mentioned rule has a drawback which cannot be easily solved. As time 
increases, the time plots can be interpreted using Taylor’s hypothesis as maps of the 
instantaneous spatial flow organizations that will cross the anemometers while 
convected by the mean flow from right to  left, the anemometers being placed at the 
time origin along the vertical axis. This is the reason why flow sketches have been 
presented flowing to the left. However, positive velocity fluctuations, i.e. excess 
velocity over the time mean, are associated with arrowheads directed to the right, 
which is in accordance with the sign rule but inconsistent with the leftwards direction 
of the flow. As there is no way to make consistent the time and sign fluctuation axis, 
results will be presented as described. Thus, arrowheads have to be understood as 
giving correctly the fluctuation sign but showing inverted direction with respect to a 
right to left flow when representing u-velocities. 

In  figure 5 one can observe that single rollers will appear in the u-velocity maps 
as two lobes of u-velocity fluctuations, sign inverted. Furthermore, double-roller 
organizations will appear as a central lobe of negative flucatuations, flanked by 
weaker positive u-velocity contours. The effects of the lack of orthogonality between 
the vorticity axis of the vortex and the slicing plane, are the same as those produced 
by modification of the scaling parameters of the vortex (xo and yo, in the plots 
presented). Then no information on the exact orientation of the vortex axis will be 
available because there is no way to distinguish between orientation effects and size 
effects. 

Fabris (1979) simultaneously sampled u, ‘u, w and temperature in the wake of a 
heated cylinder, using a special purpose multiwire probe. Figure 6 includes a few 
milliseconds of the data given in figure 11 of Fabris’ paper, together with the 
simulated velocity and temperature signals. The vortex used is a two-dimensional 
one [xo = yo -4 z o ;  f ( x / x o ,  ?//yo, z / z o )  = 13 with the circulation axis on a (2, 2)-plane, 
but not parallel to the z-axis, in such a way that the W component of the velocity, 
as measured by the anemometer, is not zero. The temperature signal has been 
simulated using stream-function values and assuming that the surrounding flow is 
cold and only the vortex is hot. As can be observed in figure 6 the experimental and 
simulated values agree very well. 

5.2. Simultaneous double c8aeei$cation procedure 
Mumford (1983) described the problem of the misclassification produced by the lack 
of orthogonality between double and single rollers when transverse alignment is 
allowed. This problem is illustrated in figure 7. Though single and double rollers are 
uncorrelated when correctly aligned (figure 7 a)  the separate search of single and 
double rollers can produce in a data frame a maximum in the correlation function for 
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FTGVRR 6. Comparison of the multiple-wire data  of Fabris (1979) with the velocity and 
temperature footprints of a single roller. 

the same longitudinal position, coordinate n = 1,2,  . . . , n,, but for different transverse 
alignmcnts, coordinate m = 1,2,  ... ,m, (figure 7 b ) .  This is the reason why, in 
addition to a single-classification algorithm, a double-classification code was used to 
analyse the roller organization in the horizontal plane. 

The general layout of the algorithms is presented in figure 8. After cross- 
correlating the data 1) with each of the prototypes P1 and P2, individual frames are 
classified as belonging to some of the families C1 and C2 investigated or are rejected 
to the null class CO. The ensemble averages M1 and M2 are used iteratively as new 
prototypes until final patterns E l  and E2 arc obtained. The classification is 
accomplished by accepting only the extrema (maximum or minimum) that appear 
centred in the transverse position within the correlation matrix of one class and is 
simultaneously bounded by two local extrema (maximum and minimum) in the 
correlation matrix of the second class. This procedure ensures that the pattern is 
classified appropriately because not only is it selected correctly by itself, but the lack 
of orthogonality is recognized and misalignment is avoided. 

Figure 9 illustrates how the classification routine separates single from double 
rollers. The top and bottom indicator outputs show, in each case, the position for best 
transverse alignment each time that maximum or minimum values of the correlation 
function plotted in the central part are found. Patterns are detected when a centred 
maximum is accompanied in the second correlation matrix by extrema placed in the 
edges of the detection matrix. For example, a t  time 200 ms a maximum is observed 
for the single-roller correlation, bounded by two extrema in the double-roller 
correlation matrix, thus the pattern is classified as a single roller. It has to be pointed 
out that these refinements of the classification method are needed because of the 
reduced number of sampling points available and to the fact that if one pattern is 
composed of three elementary closed contours in its iso-level plots, frames with only 
two of those but better aligned than their surrounding patterns can be misclassified 
if only information coming from one test pattern is available. 
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FIGURE 7.  Single- and double-roller eddies misclassification. (a) uncorrelated single and double 
rollers. ( b )  correlated single and double rollers by transverse alignment. 

A final comment has to be made on the pattern selection procedure. The cross- 
correlation procedure distinguishes between positive and negative patterns. While a 
distance-classifier would reject a data frame equal to the test pattern but sign- 
inverted, because in the pattern space both points are far away, P ( P ,  - P) = 4Z P ( C ) ~ ,  
the correlation-classifier recognizes this situation as a minimum in the correlation. 
Depending on the signals processed, both types of data frames can contribute to the 
same ensemble average after being sign-corrected. This is the case of the single-roller 
organization because for individual rollers both senses of rotation are equivalent. 
Sometimes only positive correlated frames are significant, and then negative extrema 
have to be discarded. 
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FIGURE 8. General layout of the pattern recognition algorithms. 

Data normalization 
The data sampled in the horizontal plane are obtained by a set of anemometers 
spanning along the homogeneous coordinate of the flow. Thus, it is expected that the 
statistics of the signals sampled by the difyerent anemometers should be the same. 
This set of data is normalized by subtracting from the recorded velocities their time 
mean value and dividing by their individual r.m.s. If D(i , j )  is the matrix of velocities 
measured a t  locations and times ( i , j )  then 

- 1 12 
D(i )  = 7 C D ( i , j )  

3xj-1 
(i = 1 ,2 ,  ..., ix ) ,  

Thus, the normalized velocity matrix is given by 

Data corresponding to the vertical plane are normalized in the same way, with the 
r.m.s. value being the pooled estimate of data recorded a t  all locations. This pooled 
estimate is introduced to avoid overweighing the data from the anemometers located 
a t  the edges of the wake. From a computational point of view, things are simpler if 
the correlations are computed between sets of data with zero mean. However, the 
subtraction of individual mean velocities implies that the organized motions are 
detected as fluctuations deviating from the time-mean profile. 

6. Statistical significance of structures 
Most of the ensemble averages of coherent structures or large eddies reported in 

the literature have been obtained after their existence in the flow was revealed by 
visualization. In such cases the identity and reality of the detected structures were 
established without the support of any kind of significance test. In  the present study, 
however, objective indicators of the statistical significance are applied to  the 
ensemble averages to assess their significance level. Also, the fraction of the flow used 
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to obtain each ensemble average is computed as an indicator of how important the 
structure in the flow is. 

The statistical significance of the results obtained can be established by the level 
of significance of the plotted iso-contours (f lo%, f25%, +50%, f75% of the 
peak signal). The procedure described is only approximate because in the vertical 
plane the contours plotted enclose data from anemometers of different r.m.s. values, 
and in both horizontal and vertical planes not all the anemometers presented in the 
ensemble average are obtained by averaging the same number of patterns. The mean 
M of n points randomly selected from a population of zero mean and unit standard 
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deviation, has a p.d.f. that approaches a normal distribution with zero mean and 
standard deviation l/n$, irrespectively of the form of the parent distribution, as n 
increases. As a consequence, the statistic, 

can be considered to be a standard normal variable when n > 30. If a non-zero value 
of M is tested for the null hypothesis H ,  M = 0, the statistical significance of M being 
non-zero is given by the significance a of a two-sided test that puts M just in the 
critical value, 

If the peak velocity or temperature were 1.0 r.m.s. units and the number of patterns 
averaged were 400, the f 10% contour would be significant a t  the level 

exp ( - $Zz) dZ, 

that is, 5%. This means that the probability of obtaining a value for the lowest iso- 
level contour as high as 0.1 by chance is as low as 5% and, thus, the results could be 
considered significantly different from zero. The use of a f25% contour will 
multiply the integration limits by a factor of 2.5 and the level of significance would 
be less than 0.01 %. Since the signals handled by the pattern-recognition programs 
are always centred to  zero, significant results are easily recognized as non-zero values 
in the ensemble averages. 

The level of significance depends on the peak signal and on the number of patterns 
detected. For a given peak signal the level of significance is maximum when 100% 
of the flow is classified, i.e. when the number of patterns detected is only limited by 
the overlap condition and represents the whole set of data points. A greater level of 
significance could also be achieved recording more data. This is the reason why both 
the fraction of flow represented by one ensemble average and the level of significance 
have to be used to assess the significance and importance of the organized motions 
detected. 

7. The roller organization in fully turbulent plane wakes 
To analyse the structural characteristics of a plane wake, multiple-point data 

acquisition was performed behind a single cylinder a t  x / D  = 60, 100, 140 and 220. 
Measurements were also carried out in the wakes of a cylinder with trailing splitter 
plate, a rotating cylinder and in the wakes generated behind a pair of unequal 
diameter cylinders and of a rotating and a stationary cylinder a t  x / D  = 140. Details 
of these configurations are shown in figure 2 and table 1. 

All the results and analysis that  are presented in this section correspond to data 
obtained in the (2, t)-plane (see figure 3),  i.e. with the set of anemometers aligned with 
the z-axis, at coordinates y = I ,  or -I, and = (0.6i-2.7)Zo, i = 1,2, ..., 8. Thus, a 
plane view of the wake, instead of the usual side view, has to be retained in mind. In  
this geometrical set-up the anemometers will be sensitive to the large-scale organized 
motions with their vorticity aligned with an axis crossing the (x, 2)-plane. The scales 
smaller than 0.6 I, will fall below the sampling grid while those larger than 4.2 1, 
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would be indistinguishable from other kinds of organized motion producing same- 
sign velocity fluctuations in the set of anemometers. 

Mumford (1983) showed that the typical large-scale organization of the fully 
turbulent plane wake was a three-dimensional roller motion that could be detected 
in the ( z ,  t)-plane as double or single rollers. Based on these results, our analysis has 
been directed to the detection of the same kind of large-scale organization and, 
consequently, the data has not been checked for other types of structures. Figure 10 
shows the analysis of the roller organization in the single-cylinder wake, from x / D  = 

60 to x / D  = 220, while figures 11 (a) and 11 (b)  are the single and double rollers 
used as initial test patterns. The analysis has been performed using the double 
classification algorithm. Data frames are classified as belonging to each of the classes 
represented by the test patterns, and both positive- and negative-correlated data 
windows are averaged. All results presented in figure 10 have normalized peak 
velocity values in the range 1.1-1.4 and, in each case, they represent approximately 
45 YO of the recorded flow. The levels of significance of the 10 % contour are over 5 YO 
(the worst value is 14%) for all stations, except a t  x / D  = 220 where the significance 
is 4% and 1.8% for the single and double rollers, respectively. However, the 25% 
contours are always significant a t  levels lower than 0.1 %, and the ensemble averages 
presented in figure 10 have to be compared taking into account the low significance 
of the regions contained between the 10 YO and 25 YO contours. 

From the results included in figure 10 one can conclude that the present roller 
organization is coincident with the previous findings of Savill (1979) and Mumford 
(1983). Also, it can be inferred from our results that the roller organization remains 
substantially unchanged as the mean flow reaches self-similarity. It has to be noted 
that the differences observed in the rollers a t  x / D  = 220 with respect to those a t  
x / D  = 60, 100 and 140 could be produced by the fact that  data a t  x / D  = 220 was 
obtained with the 12 mm diameter cylinder and higher potential flow speed, in order 
to maintain the same Reynolds number. As the sampling rate and the length of data 
recorded was not changed, this resulted in recording and analysing more flow. This 
is also the reason why the significance level is under 5% only at x / D  = 220. 

It is worth noting that the only scaling parameters that have been used are the half 
width of the wake and the r.m.s. values (mean velocity values are subtracted from 
velocity, but not multiplied). While the mean velocity profile could be collapsed in 
a self-similar curve beyond x / D  = 60, this is not the case for the r.m.s. values. 
However one can conclude that the size of the rollers scales with the mean velocity 
parameters, while their intensity is more or less constant when scaled with the 
current r.m.s. value (a better scaling parameter would be the turbulent kinetic 
energy). Though more than 45 YO of the data have been classified in each analysis, no 
periodicities have been detected. The probability density function of the spacing 
between consecutive rollers shows occasional peaks, but broadly spread from low 
frequencies (say 10 Hz) to the highest values allowed by the non-overlap condition. 
Some grouping of rollers without any repetitive trend can be observed in figure 12, 
where a time distribution of events detected a t  x / D  = 220 is presented. 

Some selected results obtained in the wake of the rotating cylinder and of the 
cylinder with a trailing splitter plate a t  x / D  = 140 are presented in figure 13. Both 
wakes correspond to initial conditions that modify the KBrman vortex shedding 
process. The trailing splitter plate used (see figure 2 for dimensions) retards the 
vortex shedding, which occurs at a lower Strouhal frequency, and causes the 
shedding of larger vortices (Apelt & West 1975). The rotation of the cylinder 
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FTGURE 10. Single and double rollers in the wake of a cylinder. ( a ) ,  ( b )  x / D  = 60. ( c ) ,  ( d )  x / D  = 100. 
(e), (f) x / D  = 140. ( g ) ,  ( h )  x / D  = 220. 

progressively inhibits the Karman vortex shedding as peripheral velocity increases. 
For U,/U, > 1.5 no periodic activity is detected (GavaldiL 1982) while the flow is 
increasingly distorted. 

The roller ensemble averages shown in figure 13 for the trailing splitter plate 
cylinder are very neat owing to the large number of structures recorded and analysed 
because in this case the 12 mm cylinder was also used. In this wake, peak velocity 
values are 1.15 and 1.35, for the single and double rollers, respectively. The 
significance level is under 2 YO, and the fraction of flow averaged is 49%. In the wake 
of the rotating cylinder, although the rollers detected are topologically coincident 
with those previously observed for other wakes, their size has decreased and their 
peak velocities are higher. The observed peak values are 1.65 and 2.01, for single and 
double rollers in the upper half wake, respectively, and 1.16 and 1.25 for the same 
structures in the lower part. Note that the initial distortion of the wake is propagated 
downstream and that at  z ) D  = 140 the r.m.s. values are still 0.068 and 0.094 m/s in 
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FIGURE 11. Test patterns. (a) Single roller. (b) Double roller. 

FIQURE 12. Time-distribution of events at x / D  = 220 in the wake of a single cylinder. 

the upper and lower wake, respectively, while the mean velocity profile is quite 
symmetric. If this difference is taken into account, the peak velocity signals a t  both 
sides agree very well. I n  both cases, the rollers depicted represent about 55% of the 
flow and the significance level is under 5 YO. 
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FIGURE 13. Roller eddies a t  x / D  = 140. (a) ,  ( b )  Cylinder with trailing splitter plate. ( c ) ,  (d)  Upper 
side of the wake of a rotating cylinder a t  U,/U, = 2 .  ( e ) ,  (f) Lower side of the wake of a rotating 
cylinder a t  UJU, = 2. 

Two configurations have been tested in the (2 ,  t)-plane of wakes behind arrays of 
cylinders, the wake of two unequal diameter cylinders and the wake of a pair of 
cylinders, one of which is rotating. These two configurations affect the formation of 
the Kdrman vortex street. The first wake is asymmetric owing to the different size 
of the cylinders, while the second one is forced to  become progressively asymmetrical 
and highly distorted by the rotation of one cylinder from UJU, = 0 to  k2. In the 
latter only results for U,,/Un = 0, i.e. the symmetrical wake, will be presented. The 
ensemble averages obtained in the upper and lower part of the wake of two unequal 
diameter cylinder are shown in figure 14(a-d). The peak velocity values are in the 
range 1.2-1.3r.m.s. units and the fraction of flow classified is approximately 50%. 
The rollers detected in the double-cylinder symmetrical wake (figure 14e, f) are 
hardly distinguishable from the previous ones. They have peak signal values of 1.35 
and the fraction of flow classified is 42 %. A common characteristic of all the rollers 
presented in figure 14 is that they display more scatter than those depicted in figures 
10 and 13 for the other wakes studied. This is due to the fact that  for a fixed 
timelength of experiments, if the scales of the flow increase then less flow is recorded 
and, thus, these ensemble averages were obtained from fewer data frames. In 
addition, low significance levels are obtained for the 10 % contour, ranging from 14 YO 
to 20 %, and only a t  the 25 YO contour is the significance under 1 YO. Apart from this 
aspect, the topological features agree extremely well with those of the rollers detected 
in all the preceding wakes studied. 

Common to virtually all the single-roller ensemble averages obtained with the 
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FIGURE 14. Roller eddies at x / D  = 140. (a), (b )  Upper side of the wake of two unequal cylinders. 
(c), ( d )  Lower side of the wake of two unequal cylinders. ( e ) ,  (f) Wake of two equal cylinders. 

double-classification algorithm and which are presented in figures 10, 13 and 14 is 
that they possess additional sign-inverted peak velocities, bounding the velocity 
lobes corresponding to the single-roller footprint. The only way to explain this result 
is to accept that the genuine w , , ~  organization in wakes is the double roller. As a 
consequence, the single rollers detected should be attributed to misalignment of some 
of the probably larger double rollers present in the flow. In fact, if the analysis is 
repeated looking for these structures only, more flow is classified because the 
selection criteria is not so restrictive, the scatter sometimes observable is reduced and 
the levels of significance are improved. Thus, the uncertainty in deciding between 
single and double rollers pointed out by Mumford (1983) in his analysis of the wake 
of a single cylinder, should be solved in favour of the double-roller eddies, in 
accordance with the early suggestions made by Grant (1958). 

The importance of this first conclusion just drawn is to be aware of the displayed 
similitude of all the rollers detected in the family of wakes studied. Moreover, the size 
of the rollers (which depends on the half width of the wake), the peak velocities and 
iso-level contours (which in turn depend on the r.m.5. values) and the fraction of flow 
they represent (which depends on the generating mechanism and the role played by 
the rollers in the turbulent budget), range for all the wakes in a narrow band. This 
fact, together with the different initial conditions of the wakes, as well as the different 
turbulence intensity levels of the sampling stations, indicates that the double-roller 
organization could be an intrinsic characteristic of fully turbulent plane wakes. This 
evidence is highlighted if one takes into account that among the wakes analysed, one 
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can recognize wakes without initial Karman vortices or wakes formed merging two 
single wakes, in addition to the single cylinder wake. If the results obtained by 
Mumford (1982) in a jet are also considered, it appears that  the roller organization 
could also be a structural characteristic shared by turbulent plane wakes and jets. 

The double rollers can be thought to be responsible for the self-preserving 
behaviour of the wake and for the entrainment process by engulfing, because they 
scale with the half width of the wake, which properly represents mean wake growth. 
Furthermore, the unchanging strength of the double rollers when scaled by the r.m.s. 
values, indicates that the roller-organized motions contain, approximately, the same 
fraction of the turbulent activity of the wake at any downstream position. Thus, 
they should be in dynamical equilibrium with the turbulent activity. This 
equilibrium has to be understood in a strictly dynamical sense; rollers are created, 
grow, evolve and decay in a continuous way, but the number of double rollers active 
in the wake remains constant, irrespective of the streamwise coordinate or of the 
kind of wake, as demonstrated by the fact that the fraction of flow involved in all 
ensemble averages only varies from 40 YO to 60 YO. 

Also, the scaling of the rollers with the mean flow parameters and turbulence 
intensities, suggests that they have to  be the active agent maintaining the 
correlation between u and v velocities, because this is the only significant turbulent 
quantity that appears in the momentum equation for mean velocities in far wakes. 
However, circulation in the (2,  2)-plane cannot justify the maintenance of this 
correlation and, thus the circulation axis of the double rollers are expected to be 
tilted with respect to the vertical axis in the shearwise direction, to take advantage 
of the stretching produced by the mean strain rate over the shear aligned vortex 
motions (Tennekes & Lumley 1972). Mumford (1982, 1983) has provided evidence of 
shear alignment, both in the plane wake and jet. However, the velocity data 
obtained in the vertical plane of the wake has not been analysed in that sense during 
the present work, because shear alignment is easily detected in the analysis of a 
thermally contaminated wake (Ferrd & Giralt 1989). 

8. The Karman vortex street and the w,-organized motions in far wakes 
Pacing the similarities exhibited by the different wakes analysed in preceding 

sections, it is necessary to investigate the role played by the KLrman vortices in the 
wake development and why large-scale motions in far wakes seem to be insensitive 
to the initial conditions. Attention will not be focused on the details of the Karman 
vortex shedding process, but upon the evolution of the Ktirman vortices from the 
nearest stations, x / D  = 10, to x / D  = 60 where they lose their pcriodic activity 
(Budny, Kawall & Keffer 1979), as well as to  the possibility of survival or 
regeneration of w,-vortices or Karman-like vortices farther downstream. Therefore, 
from now on, the analysis will be performed in the u-velocities obtained in a vertical 
(y, t)-plane, i.e. presenting a side view of the wake (see figure 3 for reference). 

Data was obtained in the wake of a single cylinder a t  x / D  = 10, 30, 60 and 140, 
and only at  x / D  = 140 for all the other wakes studied. The anemometers have been 
placed a t  z = 0 spanning the full velocity defect. At x / D  = 10 and 30 the mean 
velocity profile is very far from self-similarity and the anemometer spacing was 
chosen to be 0.91, instead of 0.61, in order to cover the wake appropriately. In 
addition, since a t  x / D  = 10 no significant randomness in the transverse position of 
the K a r m h  vortices was expected, the anemometers were placed covering only from 
the centre-wake to  the outer edge, halving the gap between them. This resulted in 
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spacing anemometers 0.45 I ,  a t  x / D  = 10 (covering only half the wake) and 0.9 1, a t  
x / D  = 30. For symmetrical wakes a t  x / D  2 60 the anemometers were placed a t  
positions y = (2.7-0.%)1,, i = 1,2, ..., 8, while for asymmetrical ones the anem- 
ometers were centred a t  the location of the maximum velocity defect maintaining 
the above mentioned spacing. 

8.1. Evolution of the Karman vortex street 
Figure 15 shows the velocity signals recorded a t  x / D  = 10. Anemometer 8 is in the 

wake centre-line, while anemometer 1 is in the potential flow. The velocity signals 
have been scaled by a pooled r.m.s. value to maintain appropriately the relative 
magnitude of the signals. Simultaneous and periodic fluctuations are apparent in 
figure 15. It is worth noting the high turbulent content of the signal that, together 
with the periodicities, shows a broadband spectra extending to the highest 
frequencies (GavaldB 1982). Furthermore, it has to be observed that the fluctuations 
maintain the same sign all across the half wake, while positive and negative 
fluctuations have different relative magnitudes depending on the position within the 
wake. 

Figure 16 (a) displays the ensemble-averaged u-velocity footprints of the KBrman 
vortices at x / D  = 10. This result corresponds to data recorded in the upper half wake 
and which were analysed for positive and negative u-fluctuations separately. The two 
individual plots obtained for positive and negative fluctuations are presented as the 
upper and lower iso-velocity contours in figure 16(a). In both cases the initial test 
pattern used was 8 anemometers wide, covering only half a vortex, i.e. with only one 
velocity lobe similar to A or B in figure 16(a). Transverse alignment was not allowed 
because at x / D  = 10 the Karman vortices fill the wake and any randomness in the 
transverse position should be smaller than the sampling grid. 

The additional sign-inverted lobes C and D (or E and F), which appear in figure 
16(a), are the result of the ensemble averaging procedure. They correspond to the 
Karman vortices travelling quasi-periodically before and after the vortex triggering 
the reference signal. The spacing between vortices (C-D distance) matches the 
experimental Strouhal value of 0.2 1 .  The ensemble-averaged Kdrman vortices 
presented in figure 16(a) have to be interpreted with caution, mainly when compared 
with other plots of the near Karman vortex street (Cantwell & Coles 1983 ; Kiya & 
Matsumara 1985). The results presented here do not allow the calculation of stream 
functions nor of vorticities because they only include u-velocities. 

Negative velocity fluctuations contributing to C and D in figure 16 (a) are the same 
as those over which B is obtained (the same reasoning can be applied to E, F and A). 
What is then the cause of the relative weakness of C and D when compared with A, 
or of E and F when compared with B ? The answer is that the pattern-recognition 
algorithms select individual velocity fluctuations in a window narrower than the 
displayed one. With this arrangement i t  is possible to educe any additional 
organization bounding the prospected structure. The different strength of C or D and 
A is a consequence of the phase modulation of the Kirmrin vortex shedding process 
(Wlezien & Way 1979; Keffer & Kawall 1980), that  produces weaker averages in the 
leading and trailing vortices due to loss of alignment. Usually, the inability of a large- 
scale detection scheme or of an ensemble averaging procedure to avoid the smearing 
effects of the phase jitter has been considered a drawback. But in this case it is of 
fundamental interest to localize the Karman vortices one by one, so that the 
frequency history of the vortex street can be determined. 

The analysis of the Karman vortex activity was also carried out a t  x / D  = 30 and 
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FIGURE 15. Velocity signals a t  x / D  = 10 in the upper half wake of a single cylinder. 

60, as shown in figure 16(b, c ) .  A test pattern wider than the velocity signals (12 
anemometers in front of 8) was used to allow a more effective search for the 
structures which should be more randomly distributed in the lateral coordinate. The 
fact that these or other structures are displayed centred in these and following figures 
does not mean that they are actually centred in the wake, but that transverse 
alignment has been allowed. At x / D  = 30 periodicity is the cause of the additional, 
weak, velocity contours, which are observed in figure 16(b). At x / D  = 60 no 
periodicity is evident in figure 16(c), although the topology of the averaged vortex 
is very similar to those depicted at x / D  = 10 and 30. A comparison of sizes has to 
take into account that spacing between anemometers was 0.45 I , ,  0.9 I ,  and 0.6 I , ,  at 
x / D  = 10, 30 and 60, respectively. 

What is illustrative is the different values of the peak velocity signal and the 
number of vortices detected when compared with those shed nominally by the 
cylinder. Peak velocity values are 2.56, 1.85 and 1.30 r.m.s. units a t  x / D  = 10, 30 and 
60, respectively, while the fraction of Karman vortices detected is 63 % a t  x / D  = 10 
and 28% a t  x / D  = 30. A t  x / D  = 60 the number of structures is still lower, only 
22 Yo. 

Figure 17 shows the frequency distribution of the Karman vortices detected at 
x / D  = 10, 30 and 60. Even though the histogram is p:otted with bars 5 Hz wide, the 
computed values retain the sampling resolution of 5 kHz. At x / D  = 10 three zones 
appear in the histogram. The most populated corresponds to the nominal shedding 
frequency of 70 Hz. However it broadly ranges from 50 Hz to  85 Hz. A second zone 
peaks a t  half the nominal value, while the third one groups the third and lower 
subharmonics from 10 Hz to 25 Hz. The subharmonics that appear in the histogram 
are produced by missing cycles of the velocity signals, corresponding to vortices that 
are very weak or that  have been destroyed. For example, in figure 15, between 205 
and 220 ms, anemometers 6, 7 and 8 show only random fluctuations where it was 
expected to observe a new cycle of the KBrmin periodic activity. Moreover, the peak 
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FIQURE 16. Karman vortices in the wake of a single cylinder. (a )  x / D  = 10. ( b )  x / D  = 30. 
( c )  x / D  = 60. 
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FIGURE 17. Frequency distribution of the Kdrman vortices at x f D  = 10, 30 and 60. 

at the nominal frequency is broadband, signalling an early randomization of the 
vortices within the wake. 

The short time-life of the missing vortices at x / D  = 10, suggests that their 
destruction should be attributed to  disturbances or secondary instabilities rather 
than to a pure dissipative process. Approximately the same number of vortices are 
lost between x / D  = 10 and 30, where only 28% of them are detected. Farther 
downstream the drop in the number of vortices is not so steep, 22 % are detected at 
x / D  = 60. This probably corresponds to  a change in the mechanism responsible for 
the decaying process, the dissipative effects playing a more relevant role. 

Figure 17 also shows that a t  x / D  = 30 the histogram can be interpreted in similar 
terms. The only difference is that the three previously separated zones overlap, 
producing a broad frequency distribution from 10 Hz to 80 Hz, with peaks a t  
35-40 Hz and 60-65 Hz, approximately the first subharmonic and nominal values, 
respectively. Randomization is total a t  x / D  = 60, where a quasi-uniform distribution 
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from 10 Hz to 60 Hz appears, accompanied by a weak high-frequency zone that 
perhaps reminds us of the KBrmin vortex shedding frequency. 

The structural similarities observed between all the w,-vortices detected from 
x / D  = 10 to x / D  = 60 and the residual periodic character displayed by the histogram 
a t  60 diameters suggest that the structures detected a t  this station are also Karman 
vortices. In fact individual vortices shed by the cylinder could survive beyond this 
point. Between x / D  = 30 and x / D  = 60 the number of w,-vortices detected decreases 
only from 28% to 22% and the peak velocity from 1.85 to 1.3. These differences 
indicate that a t  the latter station KBrmSn vortices do exist, but with a highly 
randomized occurrence, as illustrated by the histogram in figure 17. This is the reason 
why, from the point of view of spectral analysis, Budny et al. (1979) reported no 
significant activity for the Karmin street beyond x / D  = 60. The application of the 
more powerful pattern-recognition analysis in the present work has provided more 
detailed information about the decay of w,-vortical structures in the near wake. Note 
that Karman vortices coexist a t  x / D  = 60 with the roller motions depicted in figure 
lO(a, b).  The possible relationship between both types of vortical motion is not yet 
well understood and will be partially dealt with in the following section. 

8.2. w,-vortices in the far wake 

Figure 18(a) shows the w,-vortices detected a t  x / D  = 140 in the wake of a single 
cylinder, while figure 18(b) displays the results corresponding to the wake of a 
cylinder with trailing splitter plate. Although all the wakes included in figure 2 have 
been analysed, only these two cases are presented here because they display the two 
extreme behaviours. In the wake of the cylinder with trailing splitter plate, figure 
18(b), it is possible to detect z-aligned eddies very similar to those observed at  
x / D  = 60 in the normal wake (see figure 16c) and different from those depicted in 
figure 18(a) for the same wake a t  x / D  = 140. This difference, however, is probably 
due to the use of the diameter as the scaling factor in the wake of the cylinder with 
splitter plate, where scales are known to be larger. In both wakes, the existence of 
large-scale motions with w, seems to be compatible with the existence of double-roller 
eddies. 

Further observation of the w,-structure reported in figure 18 (a) for the wake of the 
single cylinder shows that the vortex does not behave as a typical KBrmGn one, 
because the effects of shear are noticeable in the alignment. This shear alignment in 
the 10% and 25% contours, is a genuine feature of the organized motions of the 
wake, because the initial pattern used was the symmetrical one shown in figure 11 (a). 
Shear alignment had also been observed by Mumford (1983) in the far wake. 
However he was using a template designed to classify the velocity footprints of the 
roller eddies. 

The above results suggest that the far wake is completely dominated by the shear- 
aligned structures, thus with vorticity in the ( x ,  y)-plane. The fact that the so-called 
Karmhn-like vortex in figure 18(a) has both characteristics of w, and w5,y. motions 
suggests that the features displayed are the combined results of capturing some 
residual true K a r m h  vortices, some double-roller effects and also w,-motions 
resulting from the three-dimensional character of the double rollers. Townsend 
(1979) detected very typical groups of w,-eddies a t  x / D  = 170 in the wake of a single 
cylinder. Savill (1979) considered that the double-roller eddies were more than just 
two counter-rotating eddies, but part of a big horseshoe structure. This structure 
should have a top linking both rollers, which would contain vorticity aligned with the 
cylinder axis. These ‘tops of the rollers ’ could be the @,-eddies detected by Townsend 
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FIGURE 18. o,-vortices at x / D  = 140. (a )  Single cylinder. ( b )  Cylinder with trailing splitter 
plate. 

(1979) and part of those contributing to the ensemble average of figure 18(a). They 
could also be part of the 'regenerated' KBrmdn vortex street claimed to have been 
observed in some visualizations. Nevertheless, it may be concluded that double-roller 
eddies are the more important large-scale motions in the wake. 

9. Concluding remarks 
The pattern-recognition computer codes developed in the present work allow the 

detection, identification and classification of the organized motions present in 
turbulent flows, as well as the determination of their contribution and importance in 
turbulence activity. The pattern-recognition procedure applied is flow independent 
because it has been designed to recognize repetitive trends from any type of 
stochastic signal, extracting feature axis from the multidimensional pattern space. 
Noise independence and insensitivity with respect to pattern intensity is achieved by 
measuring similitude in that space by a correlation coefficient. 

The pattern-recognition procedure is more powerful than spectral analysis because 
it is able to yield equivalent results - the histogram of detection frequency -without 
losing its ability to detect and obtain ensemble averages of organized motions. 
The main advantage of pattern recognition when compared with conditional 
sampling is that  there is no need to make use of a triggering signal different from the 
sampling signals. This is important, not only because i t  simplifies the experimental 
set-up, but also because i t  makes the detection criteria independent of both the 
energy content and the neatness of the reference signal. In fact, the statistically 
significant ensemble averages obtained in several wakes have peak signal values of 
the order of one r.m.s. unit, i.e. the pattern recognition approach is able to select 
individual realizations as weak as a few r.m.s. units. Therefore, the present technique 
is, for practical purposes, threshold independent because it has been successfully 
applied to data with a signal-to-noise ratio of about one, an aspect which the VITA 
technique lacks despite its widespread use in boundary layers. 

The pattern recognition analysis of the near wake behind a single cylinder shows 
that the decay of the Karman vortex street activity is already noticeable a t  x / D  = 
10, where more than 30% of the nominal number of vortices shed have lost their 
identity as such and are missing. This process of fast destruction of individual 
vortices, combined with the amplification of other initial disturbances or secondary 
instabilities and with the dissipative effects of turbulence, results in the ran- 
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domization of the KarmBn vortex street. This randomization, which is very clear at 
x / D  = 30 and complete a t  x / D  = 60, is the reason why in previous studies the 
KarmBn activity has been claimed to cease at approximately 60 diameters. 
Nevertheless, present results show that a t  least 20% of the vortices shed by the 
cylinder survive beyond this position. 

At x / D  = 140 o,-vortices are detected in all wakes studied. However, they do not 
seem to be related to the Karmkn vortex street because in some of the wakes 
examined this street was inhibited. Moreover, these structures appear also to be 
dominated by shear alignment and, thus, may in part be the result of footprints left 
by the three-dimensional oz, ,-structures, rather than of genuine o,-eddies. Turbulent 
flow in far wakes appears to be dominated by double-roller eddies with vorticity 
aligned with mean shear in the (2 ,  y)-plane. These rollers occupy about 50 % of the 
flow, scale appropriately with the size of the wake and contain approximately the 
same fraction of the u-velocity turbulent activity, for all wakes examined a t  
downstream positions between x / D  = 60 and x / D  = 220. Thus, double-roller eddies 
could be a large-scale organization typical of self-similar plane turbulent flows. 
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